# Recent reduction in $NO_x$ emissions over China: synthesis of satellite observations and emission inventories

**Fei Liu<sup>1,2</sup>**, Qiang Zhang<sup>2</sup>, Ronald J. van der A<sup>1</sup>, Bo Zheng<sup>2</sup>, Dan Tong<sup>2</sup>, Liu Yan<sup>2</sup>, Yixuan Zheng<sup>2</sup> and Kebin He<sup>2</sup>

<sup>1</sup>Royal Netherlands Meteorological Institute, De Bilt, the Netherlands

<sup>2</sup>Tsinghua University, Beijing , China email: liu@knmi.nl





# Motivation of cleaning China's air





Air Quality APP



#### **Action & Concern**







# Previous observed decline in OMI NO<sub>2</sub> columns





- NO<sub>2</sub> over the North China Plain peaked in 2011 after dramatic 50% increase since 2009 and decreased slightly in 2012 and 2013
- A dramatic 40% drop in NO<sub>2</sub> was widely observed in 2014–2015

Krotkov NA, et al. Aura OMI observations of regional  $SO_2$  and  $NO_2$  pollution changes from 2005 to 2015. Atmos Chem Phys **16**, 4605–4629 (2016).

#### Research questions



- Where: In which region did the NO<sub>2</sub> decline happen?
- When: Is there any regional diversity in the timeline of the NO<sub>2</sub> decline?
- Analysis at a regional level
- Why: Can we give in depth interpretations of the causes of the NO<sub>2</sub> changes?

#### OMI NO<sub>2</sub> observations



Background regions: average annual  $NO_2$  column densities less than  $1\times10^{15}$  molec/cm<sup>2</sup> or with average  $NO_2$  column densities for summer exceeding those for winter

### OMI NO<sub>2</sub> observations

12-month moving average of NO<sub>2</sub>



## OMI NO<sub>2</sub> observations



Electricity & coal consumption could not explain the simultaneous decline in OMI NO<sub>2</sub> column densities but suggests the effectiveness of emission control measures.

#### **Bottom-up emission inventory**







ID1: sectors

ID2: fuel/product

Emissions =  $A \times X \times EF \times (1-\eta)$ 

ID3: technology

**ID4: emission control** 

#### **Uncertain:**

emission factor

#### Robust:

activity rates (fuel consumptions); Technology splits



robust emission trend

#### **Bottom-up emission inventory**

Multi-resolution Emission Inventory for China (MEIC: http://www.meicmodel.org) compiled by Tsinghua University



Liu F, et al. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010. Atmos Chem Phys **15**, 13299–13317 (2015).

Zheng B, et al. High-resolution mapping of vehicle emissions in China in 2008. Atmos Chem Phys **14**, 9787–9805 (2014).

#### Agreement between top-down and bottom-up



Emission reduction from power plant sector is significant

#### Installation of denitration devices for power plants



- New emission standard for power plants in 2011
- The market share of denitration devices increased from 18% to 86%
- The average NO<sub>x</sub> emission factors of coal-fired power plants decreased from 6.2 g/kg to 2.6 g/kg from 2011–2015

#### Power plant located in Tongliao, Inner Mongolia



# Decline in NO<sub>2</sub> columns around power plants

- Only power plants with a capacity over 2000 MW were selected
- 27 large power plants in total
- Overall unit capacity for the selected power plants reached 11% of the total national capacity
- Significant decline after year 2012



#### NO2 decline VS denitration process

- The deployment procedure of denitration devices for power plants is found to be in reasonable agreement with the peak year of NO<sub>2</sub>
- A few urbanized regions (e.g., Beijing and Shanghai) reached their NO<sub>2</sub> peak ahead of the deployment of denitration devices for power plants





Liu F, et al. Recent reduction in NOx emissions over China: synthesis of satellite observations and emission inventories, ERL, in review.

#### Emission control in transportation sector

Gasoline and diesel vehicles showed a continual decline in average  $NO_x$  emission factors, decreasing by respectively 75% and 32% during 2005–2015



#### **Contribution from vehicles**



#### urbanized regions:

Provinces which reached a NO<sub>2</sub> maximum prior to 2010 Including Beijing, Tianjin, Shanghai & Guangdong

Urbanized regions implemented strict regulations for vehicle emissions years before the SCR installations

- New emission standard for vehicles ahead of the national schedule
- Slow down of the speed of vehicle population expansion
- local policies for controlling vehicle populations
- Vehicle retirement programs to scrap aged vehicles
- Expanding underground road networks
- Promotion of alternative fuel technologies

#### Take home messages

- The temporal variation of mean OMI NO<sub>2</sub> column densities of China is in good agreement with the bottomup emission inventory.
- The peak year of NO<sub>2</sub> is closely related to the year of the installations of denitration devices, which suggested that the observed reduction in NO<sub>2</sub> was primarily the result of installing denitration devices for power plants.
- The peak year of NO<sub>2</sub> showed a strong diversity over the regions. The NO<sub>2</sub> columns of urbanized regions like Beijing, Shanghai and Guangdong peaked prior to 2010, which was expected as a result of control of vehicle emissions.